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A quantum computer can simulate efficiently any 
physical process that occurs in Nature.

(Maybe. We don’t actually know for sure.)

particle collision entangled electronsmolecular chemistry

black hole early universesuperconductor



Two fundamental ideas

(1) Quantum complexity
Why we think quantum computing is powerful.

(2) Quantum error correction
Why we think quantum computing is scalable.



Quantum entanglement

Nearly all the information in a typical 
entangled “quantum book” is encoded in 
the correlations among the “pages”.

You can't access the information if you 
read the book one page at a time. 
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A complete description of a typical quantum state of just 300 qubits 
requires more bits than the number of atoms in the visible universe. 



Why we think quantum computing is powerful
We know examples of problems that can be solved efficiently by a 
quantum computer, where we believe the problems are hard for classical 
computers. Factoring is the best known example. No efficient classical 
algorithm for factoring is known, and not for lack of trying. Factoring 
numbers which are thousands of bits long is out of reach classically, yet 
eventually will be feasible quantumly.

Consider the probability distribution of measurement outcomes for n-qubits 
in a quantum computer. Complexity theory arguments, based on plausible 
assumptions, indicate that no efficient classical algorithm can efficiently 
sample from this distribution. 

We don’t know how to simulate a quantum computer efficiently using a 
digital (“classical”) computer. It is not for lack of trying. The cost of the best 
simulation algorithm rises exponentially with the number of qubits. 

The power of quantum computing is limited. For example, we don’t believe 
that quantum computers can efficiently solve worst-case instances of NP-
hard optimization problems (e.g., the traveling salesman problem). 
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“The theory of everything?”
“The Theory of Everything is not even remotely a theory of 
every thing … We know this equation is correct because it 
has been solved accurately for small numbers of particles 
(isolated atoms and small molecules) and found to agree in 
minute detail with experiment. However, it cannot be solved 
accurately when the number of particles exceeds about 10. 
No computer existing, or that will ever exist, can break this 
barrier because it is a catastrophe of dimension … We have 
succeeded in reducing all of ordinary physical behavior to a 
simple, correct Theory of Everything only to discover that it 
has revealed exactly nothing about many things of great 
importance.”

R. B. Laughlin and D. Pines, PNAS 2000.



“Nature isn’t classical, dammit, and if you want to make a simulation of 
Nature, you’d better make it quantum mechanical, and by golly it’s a 
wonderful problem because it doesn’t look so easy.”

R. P. Feynman, 1981



Why quantum computing is hard

We want qubits to interact strongly 
with one another.

We don’t want qubits to interact with 
the environment.

Until we measure them.



Quantum error correction

The protected “logical” quantum information is 
encoded in a highly entangled state of many 
physical qubits.

The environment can't access this information if it 
interacts locally with the protected system.
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The NISQ Era

The (noisy) 50-100 qubit quantum computer is coming soon.
(NISQ = noisy intermediate-scale quantum computer)

NISQ devices cannot be simulated by brute force using the 
most powerful currently existing supercomputers. 

NISQ will be an interesting tool for exploring physics. It might
also have useful applications. But we’re not sure about that.

NISQ will not change the world by itself. Rather it is a step 
toward more powerful quantum technologies of the future. 

Potentially transformative scalable quantum computers may 
still be decades away. We’re not sure how long it will take.



Qubit “quality”
The number of qubits is an important metric, but it is not the only thing that matters. 

The quality of the qubits, and of the “quantum gates” that process the qubits, is 
also very important. All quantum gates today are noisy, but some are better than 
others. Qubit measurements are also noisy.

For today’s best hardware (superconducting circuits or trapped ions), the 
probability of error per (two-qubit) gate is about 10-3, and the probability of error per 
measurement is about 10-2 (or better for trapped ions). We don’t yet know whether 
systems with many qubits will perform that well. 

Naively, we cannot  do many more than 1000 gates (and perhaps not even that 
many) without being overwhelmed by the noise. Actually, that may be too naïve, 
but anyway the noise limits the computational power of NISQ technology.

Eventually we’ll do much better, either by improving (logical) gate accuracy using 
quantum error correction (at a hefty overhead cost) or building much more accurate 
physical gates, or both. But that probably won’t happen very soon. 

Other important features: The time needed to execute a gate (or a measurement). 
E.g., the two-qubit gate time is about 40 ns for superconducting qubits, 100 µs for 
trapped ions, a significant difference. Also qubit connectivity, fabrication yield, …



What I won’t say much about

Quantum-resistant public key cryptography. New classical protocols for 
protecting our privacy when quantum computers are in widespread use 
and e.g. RSA (based on hardness of factoring) is obsolete.

Quantum networks, quantum repeaters, and quantum key distribution. 
Distributing quantum entanglement around the world. That might be done 
to achieve quantum key distribution for secure communication, or perhaps 
for other purposes like remotely sharing quantum devices. 

Quantum sensing. Quantum devices (based for example on defects in 
diamond) achieving higher sensitivity and spatial resolution than other 
sensors, with potential applications to biology, medicine, magnetometry, 
accelerometry, gravimetry, etc.

Technical advances in quantum computing hardware may also enable new 
applications for quantum networks and sensors (and vice versa).



Quantum Speedups?

When will quantum computers solve important problems that are 
beyond the reach of the post powerful classical supercomputers?

We should compare with post-exascale classical hardware, e.g. 10 
years from now, or more (> 1018 FLOPS).

We should compare with the best classical algorithms for the same 
tasks. 

Note that, for problems outside NP (e.g typical quantum simulation 
tasks), validating the performance of the quantum computer may 
be difficult. 

Even if classical supercomputers can compete, the quantum 
computer might have advantages, e.g. lower cost and/or lower 
power consumption. 



Quantum optimizers
Eddie Farhi: “Try it and see if it works!”
We don’t expect a quantum computer to solve worst case instances of NP-hard 
problems, but it might find better approximate solutions, or find them faster. 

Hybrid quantum/classical algorithms. 
Combine quantum evaluation of an 
expectation value with a classical feedback 
loop for seeking a quantum state with a 
lower value. 

Quantum approximate optimization algorithm (QAOA). 
In effect, seek low-energy states of a classical spin glass.

Variational quantum eigensolvers (VQE). 
Seek low energy states of  a quantum many-body system with a local Hamiltonian 
H. (Much easier than algorithms which require simulation of time evolution 
governed by H.)

Classical optimization algorithms (for both classical and quantum problems) are 
sophisticated and well-honed after decades of hard work. Will NISQ be able to do 
better?



How quantum testbeds might help
Peter Shor: “You don’t need them [testbeds] to be big enough to solve useful 
problems, just big enough to tell whether you can solve useful problems.”

Classical examples:
Simplex method for linear programming: experiments showed it’s fast long 
before theorists could prove that it’s fast.

Metropolis algorithm: experiments showed it’s useful for solving statistical 
physics problems before theory established criteria for rapid convergence.

Deep learning. Mostly tinkering so far, without much theory input.

Possible quantum examples:
Quantum annealers, approximate optimizers, variational eigensolvers, … playing 
around may give us new ideas.

But in the NISQ era, imperfect gates will place severe limits on circuit size. In the 
long run, quantum error correction will be needed for scalability. In the near 
term, better gates might help a lot!

What can we do with, say, < 100 qubits, depth < 100? We need a dialog between 
quantum algorithm experts and application users. 



Quantum annealing
The D-Wave machine is a (very noisy) 2000-qubit quantum annealer (QA), which solves 
optimization problems. It might be useful. But we have no convincing theoretical 
argument that QAs are useful, nor have QA speedups been demonstrated experimentally. 

QA is a noisy version of adiabatic quantum computing (AQC), and we believe AQC is 
powerful. Any problem that can be solved efficiently by noiseless quantum computers can 
also be solved efficiently by noiseless AQC, using a “circuit-to-Hamiltonian map.”

But in contrast to the quantum circuit model, we don’t know whether noisy AQC is 
scalable. Furthermore,  the circuit-to-Hamiltonian map has high overhead: Many more 
qubits are needed by the (noiseless) AQC algorithm than by the corresponding quantum 
circuit algorithm which solves the same problem. 

Theorists are more hopeful that a QA can achieve speedups if the Hamiltonian has a “sign 
problem” (is “non-stoquastic”). Present day QAs are stoquastic, but non-stoquastic
versions are coming soon. 

Assessing the performance of QA may already be beyond the reach of classical simulation, 
and theoretical analysis has not achieved much progress. Further experimentation should 
clarify whether QAs actually achieve speedups relative to the best  classical algorithms. 

QAs can also be used for solving quantum simulation problems rather than classical 
optimization problems (D-Wave, unpublished).



Noise-resilient quantum circuits
For near-term applications, noise-resilience is a key consideration in quantum 
circuit design (Kim 2017).

For a generic circuit with G gates, a single faulty gate might cause the circuit to 
fail. If the probability of error per gate is not much larger than 1/G, we have a 
reasonable chance of getting the right answer. 

But, depending on the nature of the algorithm and the circuit that implements it, 
we might be able to tolerate a much larger gate error rate. 

For some physical simulation problems, a constant probability of error per 
measured qubit can be tolerated, and the number of circuit locations where a 
fault can cause an error in a particular qubit is relatively small. This could happen 
because the circuit has low depth, or because an error occurring at an earlier 
time decays away by a later time. 

Circuits with good noise-resilience (based on tensor network constructions like 
MERA) are among those that might be useful for solving quantum optimization 
problems using variational quantum eigensolvers (VQE), improving the prospects 
for outperforming classical methods during the NISQ era (Kim and Swingle 2017). 



Quantum machine learning?
(Classical) deep learning, e.g. restricted Boltzmann machines with multiple hidden layers 
between input and output. Millions of coupling parameters, optimized on a training set to 
achieve the  proper relation between input and output. 

Deep learning may be either unsupervised (unlabeled training set), or supervised (e.g. 
learning to  identify photos). 

High-dimensional classical data can be encoded very succinctly in a quantum state. In 
principle log N qubits suffice to represent a N-dimensional vector. Such “quantum Random 
Access Memory” (= qRAM) might have advantages for deep learning applications.

However, quantum deep learning is hampered by input/output bottlenecks.

Perhaps a quantum deep learning network can be trained more efficiently, e.g. using a 
smaller training set. We don’t know. We’ll have to try it to see how well it works. 

Might be achieved by a (highly controllable) quantum annealer, or other custom quantum 
device unsuited for general purpose quantum computing. How robust to noise?

Perhaps more natural to consider quantum inputs / outputs; e.g. better ways to 
characterize or control quantum systems. Quantum networks might have advantages for 
learning about quantum correlations, rather than classical ones. 

Classical deep learning has many applications to quantum science and technology.



Quantum linear algebra
qRAM: an N-component vector b can be encoded in a quantum state |b 〉 of log N 
qubits.

Given a classical N X N input matrix A, which is sparse and well-conditioned, and 
the quantum input state |b 〉 , the HHL (Harrow, Hassidim, Lloyd 2008) algorithm 
outputs the quantum state |y〉 = |A-1 b〉, with a small error, in time O(log N). The 
quantum speedup is exponential in N.

Input vector |b〉 and output vector |y〉 = |A-1 b〉 are quantum! We can sample 
from measurements of |y〉 .

If the input b is classical, we need to load |b〉 into qRAM in polylog time to get the 
exponential speedup (which might not be possible). Alternatively the input b may 
be computed rather than entered from a database.

HHL is BQP-complete: It solves a (classically) hard problem unless BQP=BPP.

Example: Solving (monochromatic) Maxwell’s equations in a complex 3D 
geometry; e.g., for antenna design (Clader et al. 2013). Discretization and 
preconditioner  needed. How else can HHL be applied?

HHL is not likely to be feasible in the NISQ era. 



Quantum simulation
We’re confident strongly correlated (highly entangled) materials and large 
molecules are hard to simulate classically (because we have tried hard and have 
not succeeded). 

Quantum computers will be able to do such simulations, though we may need to 
wait for scalable fault tolerance, and we don’t know how long that will take. 

Potential (long-term) applications include pharmaceuticals, solar power 
collection, efficient power transmission, catalysts for nitrogen fixation, carbon 
capture, etc. These are not likely to be fully realized in the NISQ era.

Classical computers are especially bad at simulating quantum dynamics ---
predicting how highly entangled quantum states change with time. Quantum 
computers will have a big advantage in this arena. Physicists hope for 
noteworthy advances in quantum dynamics during the NISQ era. 

For example: Classical chaos theory advanced rapidly with onset of numerical 
simulation of classical dynamical systems in the 1960s and 1970s. Quantum 
simulation experiments may advance the theory of quantum chaos. Simulations 
with ~ 100 qubits could be revealing, if not too noisy.



Digital vs. Analog quantum simulation
An analog quantum simulator is a quantum system of many qubits whose 
dynamics resembles the dynamics of a model system we wish to study. A digital 
quantum simulator is a gate-based universal quantum computer, which can be 
used to simulate any physical system of interest when suitably programmed.

Analog quantum simulation has been an active research area for 15 years or 
more; digital quantum simulation is just getting started now.

Analog platforms include: ultracold (neutral) atoms and molecules, trapped 
ions, superconducting circuits, etc.  These same platforms can be used for 
circuit-based computation as well.

Although they are becoming more sophisticated and controllable, analog 
simulators are limited by imperfect control. They are best suited for studying 
“universal” properties of quantum systems which are hard to access in classical 
simulations, yet sufficiently robust to be accessible using noisy quantum 
systems.

Eventually, digital (circuit-based) quantum simulators will surpass analog 
quantum simulators for studies of quantum dynamics, but perhaps not until 
fault tolerance is feasible. 



The steep climb to scalability
Long-lived logical qubits, protected by quantum error correction, are likely to be 
realized in the next few years. 

But NISQ-era quantum algorithms will need to tolerate noise. Fully fault-tolerant 
quantum computing may still be decades away. We don’t really know how long it will 
take … We may need platforms supporting millions of physical qubits, or more, a very 
big leap from where we are now. (“Quantum Chasm” ≅ “NISQ Risk”)

Lower gate error rates will substantially reduce the overhead cost of fault tolerance, 
and also extend the reach of quantum algorithms which do not use error correction. 
Topological quantum computing (being aggressively pursued by Microsoft) is one 
aspirational approach to achieving much lower error rates.

Platforms with faster gates have shorter time to solution, all else being equal. This 
speed advantage will become more important in the longer term. 

Significant advances, in both basic quantum science and systems engineering, will be 
needed to achieve scalable FTQC.  Because we have so far to go, new insights and 
developments could substantially alter the outlook for scalability.

We tend to be too optimistic about the short run, too pessimistic about the long run. 





In the future, the world's leading physicists, having played quantum games since age 3, will 
be unable to understand why 20th century physicists thought quantum mechanics is weird. 



Quantum gaming will be a natural arena for quantum machine learning. 



Quantum speedups in the NISQ era and beyond

Can noisy intermediate-scale quantum computing (NISQ) surpass exascale classical 
hardware running the best classical algorithms?

Near-term quantum advantage for useful applications is possible, but not guaranteed. 

Hybrid quantum/classical algorithms (like QAOA and VQE) can be tested.

Near-term algorithms should be designed with noise resilience in mind. 

Quantum dynamics of highly entangled systems is especially hard to simulate, and is 
therefore an especially promising arena for quantum advantage. 

Experimentation with quantum testbeds may hasten progress and inspire new algorithms.

NISQ will not change the world by itself. Realistically, the goal for near-term quantum 
platforms should be to pave the way for bigger payoffs using future devices. 

Lower quantum gate error rates will lower the overhead cost of quantum error correction, 
and also extend the reach of quantum algorithms which do not use error correction.

Truly transformative quantum computing technology may need to be fault tolerant, and so 
may still be far off. But we don’t know for sure how long it will take. Progress toward fault-
tolerant QC must continue to be a high priority for quantum technologists.
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Source:  ADVANCING QUANTUM INFORMATION SCIENCE: NATIONAL CHALLENGES AND OPPORTUNITIES 
Produced by the Interagency Working Group on Quantum Information Science  of the Subcommittee on 
Physical Sciences, National Science and Technology Council, July 2016 



Best classical algorithms: cautionary tales
Boson sampling: From 30 photons and 500 modes to 50 photons and 2500 modes (Neville et 
al. 2017).

Random circuits: Simulating 49 qubits with TB rather then PB memory (IBM 2017) --- trading 
depth and space.

Best approximation ratio for Max E3LIN2 (with bounded occurence D) achieved by QAOA at 
level p=1 (Farhi et al. 2014), later surpassed by classical all-star team.

D-Wave evidence for constant factor speedup weakens when quantum annealer is compared 
with better classical algorithms. 

Randomized classical matrix inversion can compete with quantum in some parameter regimes 
(Le Gall).

Tensor network methods for quantum many-body physics and chemistry keep improving (MPS, 
PEPS, MERA, tensor RG). 

Are physically relevant quantum problems really classically hard, even if BQP ≠ BPP?

Dynamics seems promising, but MBL (many-body localization) may be classically easy, and ETH 
(eigenstate thermalization hypothesis = strong quantum chaos) may be physically boring 
(wisecrack by Frank Verstraete). 



Quantum hardware: state of the art
IBM Quantum Experience in the cloud: now 16 qubits (superconducting circuit). 
20 qubits by end of 2017, 50-qubit device “built and measured.”

Google 22-qubit device (superconducting circuit), 49 qubits next year.

Harvard 51-qubit quantum simulator (Rydberg atoms in optical tweezers). 
Dynamical phase transition in Ising-like systems; puzzles in defect (domain wall) 
density.

UMd 53-qubit quantum simulator (trapped ions). Dynamical phase transition in 
Ising-like systems; high efficiency single-shot readout of many-body correlators. 

ionQ: 32-qubit processor planned (trapped ions), with all-to-all connectivity.

Microsoft: is 2018 the year of the Majorana qubit?

And many other interesting platforms … spin qubits, defects in diamond (and 
other materials), photonic systems, …

There are other important metrics besides number of qubits; in particular, the 
two-qubit gate error rate (currently > 10-3) determines how large a quantum 
circuit can be executed with reasonable signal-to-noise. 



Speeding up semidefinite programs (SDPs)
Given N X N Hermitian matrices C, {A1, … ,Am} and real numbers {b1, …, bm}, 
maximize tr(CX) subject to tr (Ai X) ≤ bi, X ≥ 0.

Many applications, classically solvable in poly(m,N ) time.

Suffices to prepare (and sample from) Gibbs state for H = linear comb. of input 
matrices. Quantum time polylog(N) if Gibbs state can be prepared efficiently 
(Brandão & Svore 2016). Output is a quantum state ρ ≅ X.

When can the Gibbs state be prepared efficiently?
-- H thermalizes efficiently.
-- Input matrices are low rank (Brandão et al. 2017).

Can be viewed as a version of quantum annealing (QA) where Hamiltonian is 
quantum instead of classical, and where the algorithm is potentially robust with 
respect to small nonzero temperature.

The corresponding Gibbs state can be prepared efficiently only for SDPs with special 
properties. What are the applications of these SDPs?



Applications of quantum linear algebra
Given classical input A (N X N matrix, sparsity s and condition number κ) and N-
qubit quantum input |b〉, algorithm outputs 
|y〉 = |A-1 b〉 with error ε. 

It is more promising if the input b is computed rather than entered from a 
database.

Example: Solving (monochromatic) Maxwell’s equations in a complex 3D 
geometry; e.g., for antenna design (Clader et al. 2013). Discretization and 
preconditioner  needed.

Alternative method for solving classical scattering problems: quantum simulation 
of N X N Laplacian using O(log N) qubits (Jordan et al. 2017). Need efficient 
preparation of initial state (e.g. input Gaussian wavepacket).

Recommendation systems (e.g. Netflix/Amazon with m=108 users and n=106

products). Sample rapidly from preference matrix with low-rank k ≅ 100 (Kerenidis
& Prakash 2016). Quantum queries to a classical data structure: Linear-time 
offline preprocessing, online processing of quantum queries in time poly(k) 
polylog(mn).



Prototypical quantum simulation task
(1) State preparation. E.g., incoming scattering state.

(2) Hamiltonian evolution. E.g. Trotter approximation.

(3) Measure an observable. E.g., a simulated detector.

Goal: sample accurately from probability distribution of outcomes. 

Determine how computational resources scale with: error, system size, particle 
number, total energy of process, energy gap, …

Resources include: number of qubits, number of gates, …

Hope for polynomial scaling! Or even better: polylog scaling. 

Need an efficient preparation of initial state.

Approximating a continuous system incurs discretization cost (smaller lattice 
spacing improves accuracy).

What should we simulate, and what do we stand to learn?
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