

A Reconfigurable Quantum Computer

David Moehring CEO, IonQ, Inc. College Park, MD

Quantum Computing for Business 4-6 December 2017, Mountain View, CA

IonQ Highlights

Full Stack Quantum Computing Company

Venture Capital Backing from NEA, Google Ventures, Amazon

Spinoff from Duke and University of Maryland

Industry Leading Team in Trapped Ions

Proven Technology Operating Today with >50 Qubits

Qubits: The Challenges

D- Ability to implement all "computing operations"

f(x) Efficient algorithm execution

Scalable beyond individual modules

IonQ: Demonstrated Full-Stack Solution

Fully-Functional Proof-of-Concept Quantum Computer

THE WALL STREET JOURNAL.

"The work represents a leap in the field of so-called quantum computers"

"The new prototype...is a step in that direction – a 'very clear demonstration of flexible programmability and universality on a single hardware platform"

"Previous attempts have made strides toward, but haven't quite achieved, such versatility"

Ions: Nature's Qubits

Each ion stores a qubit as a simple two-state system

lons make impeccable qubits

- Fundamentally quantum
- Inherently identical & immutable
- Highest demonstrated performance

lons are "trapped" by classical electric fields in a vacuum

- Perfect isolation using Si technology
- Programmable and reconfigurable
- At room temperature

Laser beams are used to manipulate ion qubits (i.e. prepare *any* qubit state)

7

Ion Qubit Computation

Laser beams can also perform logic operations between qubits (e.g. manipulating pairs of ions)

Laser beams can also perform logic operations between qubits (e.g. manipulating pairs of ions)

This also allows multi-qubit gates, e.g. **3-qubit gates...**

...and N-qubit gates!

IonQ vs Alternatives

System

TRAPPED IONS Fully Connected

Superconducting Loops Star Connected

Superconducting Loops Adjacent Connected

Algorithm Success Probability*

*2017 Proceedings of the National Academy of Sciences, "Experimental Comparison of Two Quantum Computing Architectures"

Connectivity Matters

Not all 20-qubit systems are created equally.

Fully Integrated System Focused development on "Quantum OS" Software Quantum-computing programing language and compiler Program, Vertically Integrated Control, UX Customer-optimized user interface Hardware control system Fully Connected System Hardware High Fidelity Qubit Hardware Controlling Qubits Lab-scale Prototype: Today

Software Strategy

Simple | Elegant, Easy-to-use, Approachable API and SDK

Extensible | Evolving Domain-Specific Libraries

Manageable | All the Benefits of a Cloud-based Service

Powerful | Unmatched Tools, Simulation and Hardware

Flexible | Developer-first, Developer-friendly

Cloud Integrated Development Environment

Shor's	s Factoring Algorithm	new edit list - +	⇒	update	simulate	execute	jobs		- +
1	set semiprime 16723					1	-6-	6	
2	set seed 2		_				- qra		
3	<pre>set L (floor(log(semiprime)/log(2)+1))</pre>						+		Z
4	set gl_bandwidth (2*L)		Ť						
5	2.1.2.42		•					• Z	
6	Label (L)								
6			•						
0	alloc neg wkspt[(1)]							a	
10	alloc neg wkspil(L)]		_			_	cc_moa	a_aaa	
11	//alloc overflow[1]						qfa	fa	
12	alloc aux[1]								
13			•						Z
14	seg aft [register] ng bandwidth		I						
15	loop ntarg (ng-1) 0 -1		•					- • Z	
16	op h register[ntarg]								_
17	if (ntarg>0)		_				-dis	IA	
18	loop ncont (ntarg-1) (0)								. 7
19	if ((ncont-ntarg)<=bandwidth)								-8 -16
20	<pre>set ang (2**(ntarg-ncont))</pre>							Z Z Z	
21	op z register[ntarg] register[ncont]	(ang)							
22	and a feature and an address bandwidth								Z_4
23	seq qfa [register] nq aaaena banawiath								
24	f(f) = (f) = (add ond (2**b) + add)(2-1)								Z
26	1000 ntara (ng-1) (hit add) -1						-afi	ft.	
27	if ((bit add-ntara)<-bandwidth)					1	42.		
28	set and (2**(ntara-bit add))							H.	
29	op z register[ntara] (ang)								
30									
31	<pre>seq cc_mod_add [control1] [control2] [register] nq adden</pre>	d bandwidth nc1 nc2							
32	<pre>group controls control1[nc1] control2[nc2]</pre>							<u>H</u> _1	
33	<pre>cexp qfa controls register (nq+1) (addend) (bandwid</pre>	th)							
34	<pre>exp -qfa register (nq+1) (semiprime) (bandwidth)</pre>								
35	<pre>exp -qft register (nq+1) (bandwidth)</pre>								
36	<pre>op cnot register[(nq)] aux[0]</pre>								
37	exp qtt register (nq+1) (bandwidth)	4115						H H	
38	cexp qta aux[0] register (nq+1) (semiprime) (bandwi	ath)							
39	cexp -qra controls register (nq+1) (addend) (bandwid	thy							-8
40	exp -qrt register (nq+1) (banawiath)		-						
		$e^{ix} = \cos x + i \sin x$		2481	1 qubit	932 2 qu	bit 768	3 qubit 7181 total gates	3791 circuit depth

Hybrid Computation

Iterative programs are executed in a classical sandbox co-located with the quantum computer.

IonQ Design System

Fully programmable, general purpose machine

Supports engaging with a broad set of potential users

Best-in-kind performance on algorithm execution

Compelling roadmap for future scalability

Complete System

The Full Power of Quantum

