

Q2B, NASA AMES RESEARCH CENTER, 2017-12-05

Chinese QC Funding

Xiaobo Zhu

CAS Center for Excellence in Quantum Information and Quantum Physics University of Science and Technology of China

Email: xbzhu16@ustc.edu.cn

Overview of Chinese government Quantum information programs

Overview of the major Chinese government QC programs

- 2006-2010 (Eleven Five-Year Plan)
- > 2011-2016 (Twelve Five-Year Plan)
- > 2016-present (Thirteen Five-Year Plan)
- ~4 billion CNY from Anhui , Shanghai, Shandong, etc. Province
- ~1 billion CNY ~5 billion CNY ~2 billion CNY

Quantum computation and simulation

Quantum Metrology

Overview of the major Chinese government QC programs

China's Future National Projects

China's Future National Projects

CAS Center is now playing a leading role in organizing

- National Science and Technology Project on Quantum Information in the next 15 years, similar to European Quantum Technologies Flagship
- National Laboratory for Quantum Information Sciences (NLQIS)

Global Quantum Communication Networks Scalable Quantum Computation and Quantum Simulation Super-resolution Quantum Metrology

Introduction to the CAS Center

- Jointly supported by CAS and the Ministry of Education
- Annual budget ~100 million RMB

Hosted by **USTC**

includes top institutes and universities on quantum physics

and excellence groups among China's universities: Tsinghua University, Peking University, Fudan University, etc.

National Quantum Communication Backbone Project

Inter-city quantum communication backbone with 32 trusted relays (~2000km)
 For financial applications, public affairs, etc.
 Test-bed for quantum foundations (e.g. frequency dissemination)
 Established in the end of 2016

Jinan

Beijing

Hefei

Shanghai

CAS Strategic Priority Research Program: Quantum Satellite

> Quantum Science Satellite "Micius" was launched on Aug 16, 2016

Micius' Three Missions

 High-rate quantum key distribution (QKD) between satellite and ground
 Quantum entanglement distribution from satellite, test of "spooky action at a distance" under strict Einstein's locality condition
 Quantum teleportation between ground and satellite
 Urumqi
 Delingha
 -1200km

Lijiang

Vgari

National Laboratory for Quantum Information Sciences (NLQIS): Organization

Towards Global Quantum Communication Network

> Widespread fiber quantum communication infrastructure
> Compatibility with classical optical communication networks
> Quantum repeater enabling quantum communications at a range of ~1000km
> Technology standards for quantum communication

Towards Global Quantum Communication Network

- > Quantum Constellation covering the whole earth directly, with MEO and GEO satellites which will be launched in next 5-10 years
- ➤ Global quantum communication infrastructure ➡ "Quantum Internet"

Candidates for Quantum Computation and simulation

Superconductor	Photons	Cold atoms			
Topological	Trapped ions	NV center			
NMR	Quantum dot	• • •			

 $\sim 1/3$ of budget will go to QC

Scalable Quantum Computation and Simulation

- In next 5 years: quantum computer with 50-60 qubits => beating classical super computer in specific tasks (e. g. Boson sampling and portfolio optimization)
- In next 10-15 years: quantum computer with hundreds of qubits mimicking condensed matter physics (e. g., high temperature superconductor, quantum Hall effect, etc.)

Precise Timing Information Sharing

Global microwave time and frequency network Long time instability below 10⁻¹⁵

Fiber frequency transfer
V. S. long time instability to 10⁻¹⁹, 4 magnitudes
better than microwave scheme

Precise Timing Information Sharing

The Project "High-precision ground-based time service system"

To build the world's largest optical fiber time-frequency transfer network, with the most advanced indicators of the performance
 3 primary stations, 5 secondary stations and 19 tertiary test stations

High-resolution and Highly Sensitive Measurements

Optical clock (stability at the 10⁻¹⁹ level) + large scale optical time-frequency transfer network

High precision inertial navigation

Atomic gyroscope

Atomic gravimeter

Applications for medical test and environmental monitoring, etc.

Atomic magnetometer

Single photon LIDAR

Commercial partnerships

Commercial partner of CAS Center

Most of the commercial applications are focused on the quantum communications. Alibaba sponsored CAS center since 2016, and established CAS-Alibaba quantum computing laboratory

Progress on superconducting and Photonics QC

Superconducting QC groups in China

Qubit characterizations

Readout with home-made paramps

Single Qubit Gates

Single qubit gate randomized benchmarking>99.9%

CZ Gate

CZ randomized Benchmarking 70 random sequences 1500 averages

10-Qubits processor with complete connection

List of parameters

	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9	Q_{10}	
$\omega_j^0/2\pi$ (GHz)	5,782	5,831	5.828	5,780	5.760	5,863	5,780	6.004	5,893	5,930	
$\omega_I/2\pi$ (GHz)	≈ 5.655 $\omega_{\rm B}/2\pi \approx 5.795$										
$T_{1,j}$ (µs)	27.2	24.4	10.9	15.0	19.2	23.7	13.8	11.8	17.1	22.0	
$T_{2,j}^{*}$ (µs)	2.9	2.8	2.8	2.2	2.6	1.8	1.1	2.1	1.7	4.4	
$T_{2,j}^{SE}$ (µs)	11.8	10.6	10.0	10.8	11.7	8.9	8.0	8.0	7.9	11.8	
$\omega_j/2\pi$ (GHz)	5.080	5.467	5.657	5.042	5.179	5.605	4.960	5.260	5.146	5.560	
$g_j/2\pi$ (MHz)	14.2	20.5	19.9	20.2	15.2	19.9	19.6	18.9	19.8	16.3	
X/2 fidelity	0.9985(2)	0.9992(1)	0.9984(1)	0.9987(2)	0.9991(1)	0.9964(5)	0.9987(1)	0.9980(3)	0.9988(3)	0.9989(1)	
Simultaneous X/2 fidelity	0.9978(7)	0.9980(2)	0.9953(5)	0.9955(5)	0.9985(2)	0.9962(3)	-	-3	0.9979(2)	0.9931(12)	
$\omega_j^r/2\pi$ (GHz)	6.509	6.541	6.615	6.614	6.635	6.694	6.691	6.794	6.809	6.891	
$g_j^r/2\pi$ (MHz)	41.3	39.9	40.6	38.2	38.5	40.4	41.8	40.9	40.2	38.7	
$\delta \omega_j^m / 2\pi$ (MHz)	31.1	32.7	21.1	46.5	9.0	45.1	22.5	19.5	26.0	70.2	
n_j^r	92	59	31	180	30	81	93	74	103	203	
$1/\kappa_j^r$ (ns)	291	275	272	348	223	284	248	266	299	242	
$F_{0,j}$	0.921	0.955	0.982	0.974	0.962	0.988	0.950	0.970	0.961	0.971	
$F_{1,j}$	0.867	0.915	0.904	0.928	0.927	0.917	0.922	0.880	0.894	0.934	

Full state tomography

4 qubits HHL algorithm

4 qubits HHL algorithm

Controlling a large number of photon entanglement

Review: Pan, et al. Multiphoton entanglement and interferometry, Rev. Mod. Phys. 84, 777 (2012)

Quantum logic, QEC, and algorithms

Quantum controlled-NOT logic

Zhao et al., PRL 94, 030501 (2005)

Shor's algorithm

Lu et al., PRL 99, 250504 (2007)

- Deustch & Grover's algorithm
 Gao et al., Nat. Photonics 5, 117 (2011)
- <u>Revealing fractional statistics of anyons</u> Lu et al., PRL 102, 030502 (2009)
- Topological error correction Yao et al. Nature (2012)

Solving systems of linear equations Cai et al., PRL 110, 230501 (2013) Quantum artificial intelligence Cai et al., PRL 114, 110504 (2015)

